ZU DEN KURSEN!

Finanzmanagement - Annuitätenmethode

Kursangebot | Finanzmanagement | Annuitätenmethode

Finanzmanagement

Annuitätenmethode

x
bibukurse JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien erwarten dich:
Komplettpaket für Bilanzbuchhalter


2302 Lerntexte mit den besten Erklärungen

400 weitere Lernvideos von unseren erfahrenen Dozenten

2823 Übungen zum Trainieren der Inhalte

590 informative und einprägsame Abbildungen

Inhaltsverzeichnis

Die Annuitätenmethode führt bei gleicher Laufzeit der verglichenen Investitionen nicht zu anderen Ergebnissen als die Kapitalwert- oder Endwertmethode, sie beleuchtet allerdings die Investition aus einem anderen Blickwinkel.

Expertentipp

Hier klicken zum AusklappenMan fragt sich hier, welchen konstanten Überschuss (= Annuität = Rente = Rate) A man aus einer gegebenen Investition ziehen kann.

Die Formel zur Berechung der Annuität lautet

A = $\ C_0$ ·$\ q^n$·(q - 1)/($\ q^n$– 1)= $\ C_0$/RBWF(n,i) wenn der Kapitalwert $\ C_0$ bekannt ist bzw.

A = $\ C_0$·KWF(n,i) bzw.

A = $\ C_n$·(q - 1)/($\ q_n$– 1), wenn der Endwert $\ C_n$ bekannt ist.

Video: Annuitätenmethode

Expertentipp

Hier klicken zum AusklappenMan kann sich also die aufwändige Rechnerei sparen, wenn der Rentenbarwertfaktor – wie in der Prüfung üblich – bekannt ist, weil er nachgeschlagen werden kann, s. Tab. 29 bei der folgenden Rechnung.

Wenn man lediglich den Endwert $\ C_n$ einer Investition hat, dann lässt sich selbstverständlich die eine Formel wegen

$\ C_n$= $\ C_0$·$\ {(1 + i)}^n$ sehr leicht aus der anderen herleiten.

So ist im Beispiel 16 der Investition A der Kapitalwert $\ C^A_0$= 295,32 €, der Endwert $\ C^A_n$= 382,03 €. Die Annuität des Projekts A ist damit

A = 295,32·$\ {1,09}^3$·(1,09 - 1)/($\ {1,09}^3$– 1) = 116,67 bzw.

A = 295,32/RBWF(3;9%) = 295,32/2,531 = 116,67 € oder auch

A = 382,45·(1,09 - 1)/($\ {1,09}^3$– 1) = 116,67.

Bei Investition B liegt die Annuität bei

A = 103,01·$\ {1,09}^3$·[(1,09 - 1)/($\ {1,09}^3$- 1)] = 40,69 oder

A = 103,01/RBWF(3;9 %) = 103,01/2,531 = 40,69 € bzw., anders gerechnet,

A = 133,40·(1,09 - 1)/($\ {1,09}^3$– 1) = 40,69.

Die folgende Tabelle verdeutlicht die Bedeutung der Annuitätenmethode anhand der Investition A:

Jahr

0

1

2

3

Zahlungsreihe

-1.000

800

300

400

Entnahme in t = 1

            

-116,647

  

Saldo

 

683,33

744,83

 

Entnahme in t = 2

  

-116,647

 

Saldo

  

928,15    

1.011,69

Entnahme in t = 3

   

 -116,65

verbleibender Restwert

   

1.295,01

aufgezinste Anschaffungs-

auszahlung

 

                 

                 

-1.295,01 = 1.000·$\ {1,09}^3$= 1.000·1,295

Saldo am Ende

   

0

Tab. 10: Annuität als konstante Entnahme aus Zahlungsreihe

Die Einzahlungen aus der Investition finanzieren die Annuität von 116,67 €, die der Investor jedes Jahr entzieht (s. Tab. 10). Das, was übrig beliebt (683,33 € im ersten Jahr), wird ein Jahr angelegt und steht im zweiten Jahr zur Verfügung, um die nächste Entnahme von 116,67 € zu finanzieren. Der verbleibende Betrag von 928,15 € wird wiederum angelegt. Zunächst verbleibt ein Rest im letzten Jahr - nach der dritten Entnahme der Annuität- von 1.295,01 €. Dieser Betrag wird allerdings in kompletter Höhe gebraucht für die Finanzierung der anfänglichen 1.000 €, denn -1.000· $\ {1,09}^3$= -1.295,01 €.

Insgesamt reichen also die Investitionsüberschüsse der Jahre t = 1, t = 2 und t = 3 genau aus, um

  • die Annuität A zu speisen, und um

  • die Anschaffungsauszahlung zu finanzieren.

Hiernach bleibt nichts mehr übrig.

Ebenfalls kann man sich die Annuität A so klarmachen (s. Tab. 11): Wenn man am Anfang 295,32 € zur Verfügung hat, so lassen sich - nach einjähriger Verzinsung des (Renten-)Barwerts, jedes Jahr 116,67 € dem Konto entziehen, und das drei Jahre lang. Am Ende bleibt dann nichts mehr übrig.

Jahr

0

1

2

3

Verzinsung des Barwerts

295,32

321,9

  

Entnahme in t = 1

 

-116,67

  

Verzinsung des Saldos

 

205,23

223,7

 

Entnahme in t = 2

  

-116,67

 

Verzinsung des Saldos

  

107,04

116,67

Entnahme in t = 3

   

-116,67

Saldo am Ende

   

0

Tab. 11: Annuität als konstante Auszahlung

Insgesamt lässt sich folgende Regel festhalten:

Merke

Hier klicken zum AusklappenFühre die Einzelinvestition durch, wenn ihre Annuität positiv ist

(Kapitalwert und Endwert sind dann auch positiv), d.h. wenn

$\ C_0$≥ 0 ‹=› $\ C_n$≥ 0 ‹=› A ≥ 0 ist.

Führe sie nicht durch, wenn die Annuität negativ ist

(Kapitalwert und Endwert sind dann auch negativ), d.h. wenn

$\ C_0$< 0 ‹=› $\ C_n$< 0 ‹=› A < 0 ist.

Beispiel

Hier klicken zum AusklappenDer Kapitalwert eines Investitionsprojekts ist 4.000 €. Bestimme die Annuität, wenn der Planungshorizont bei vier Jahren liegt. Mache die Probe.

Die Annuität rechnet man „zu Fuß“ oder mit dem Rentenbarwertfaktor (s. Tab. 28)

A = $\ C_0$/RBWF(8%) = 4.000/3,31213 = 1207,68 €.

Probe:

Jahr

0

1

2

3

4

Verzinsung des Barwertes

4.000

4.320

   

Entnahme

in t = 1

 

-1.207,68

   

Verzinsung

des Saldos

 

3.112,32

3.361,31

  

Entnahme

in t = 2

  

-1.207,68

  

Verzinsung

des Saldos

  

2.153,63

2.325,92

 

Entnahme

in t = 3

   

-1.207,68

 

Verzinsung

des Saldos

   

1.118,24

1.207,69

Entnahme

in t = 4

    

-1207,69

Saldo am Ende

    

0

Tab. 12: Verständnis der Annuität